Rotational Kinematics lab
1. Use the velocity components to determine the direction of the velocity vector. Is it in the expected direction? 1. From the x-t and y-t images, the two curves show a sine and cosine relationship, indicating that the object is in uniform circular motion. Since position over time behaves as a sine and cosine function, this means that the velocity is their derivative, and the direction of the velocity is always perpendicular to the direction of the radius, so the velocity vector varies in the tangential direction, which is consistent with the theory of circular motion. The formula used to calculate speed 2. Analyze enough different points in the same video to make a graph of the speed of a point as a function of distance from the axis of rotation. What quantity does the slope of this graph represent? In this experiment, we investigated the relationship between radius, linear velocity and acceleration in uniform circular motion by analyzing the motion of three different points on a r...